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Abstract Unravelling the complex correlation between

chemical shifts of 13Ca, 13Cb, 13C0, 1Ha, 15N, 1HN atoms in

amino acids of proteins from NMR experiment and local

structural environments of amino acids facilitates the

assignment of secondary structures of proteins. This is an

important impetus for both determining the three-dimen-

sional structure and understanding the biological function

of proteins. The previous empirical correlation scores which

relate chemical shifts of 13Ca, 13Cb, 13C0, 1Ha, 15N, 1HN

atoms to secondary structures resulted in progresses toward

assigning secondary structures of proteins. However, the

physical-mathematical framework for these was elusive

partly due to both the limited and orthogonal exploration of

higher-dimensional chemical shifts of hetero-nucleus and

the lack of physical-mathematical understanding underly-

ing those correlation scores. Here we present a simple

multi-dimensional hetero-nuclear chemical shift score

function (MDHN-CSSF) which captures systematically the

salient feature of such complex correlations without any

references to a random coil state of proteins. We uncover

the symmetry-breaking vector and its reliability order not

only for distinguishing different secondary structures of

proteins but also for capturing the delicate sensitivity in-

terplayed among chemical shifts of 13Ca, 13Cb, 13C0, 1Ha,
15N, 1HN atoms simultaneously, which then provides a

straightforward framework toward assigning secondary

structures of proteins. MDHN-CSSF could correctly assign

secondary structures of training (validating) proteins with

the favourable (comparable) Q3 scores in comparison with

those from the previous correlation scores. MDHN-CSSF

provides a simple and robust strategy for the systematic

assignment of secondary structures of proteins and would

facilitate the de novo determination of three-dimensional

structures of proteins.
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NMR chemical shift � Complex correlation between

chemical shifts and secondary structures of proteins �
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Introduction

The determination of secondary structure of a protein is an

important step toward the experimental determination of a

three-dimensional structure of a protein. The assignment of

secondary structure based on chemical shifts of atoms in a

protein from NMR experiments exploits the fact that

chemical shifts are very sensitive to the local structure of

protein conformation. (Wagner et al. 1983; Szilagyi and

Jardetzky 1989; Pastore and Saudek 1990; Spera and Bax

1991; Wishart et al. 1991, 1992; Wishart and Sykes 1994;

Luginbuhl et al. 1995; Cornilescu et al. 1999) Unravelling

the complex correlations between chemical shifts of
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13Ca;13 Cb;13 C0;1 Ha;15 N;1 HN atoms from hetero-nuclear

NMR experiment and the local environment of amino acids

greatly facilitates the successful assignment of secondary

structures of bigger proteins.(Bowers et al. 2000; Cavalli

et al. 2007; Gong et al. 2007; Shen et al. 2008; Wishart

et al. 2008) An empirical chemical shift index (CSI)

method was put forward by Wishart et al. (Wishart et al.

1991, 1992; Wishart and Sykes 1994), which compared

each chemical shift value of 13Ca;13 Cb;13 C0;1 Ha atoms of

amino acids in a-helix or b-strand with those in a random

coil structure for several training proteins, and provided the

digital measure of the propensity of chemical shifts for

secondary structures via considering four orthogonal one-

dimensional CSIs(1DCSI) separately. Jardetzky et al.

(Wang and Jardetzky 2002) (PSSI method) enumerated the

probability for each of three secondary structures from the

occurrence distribution of chemical shift values of six

atoms in twenty kinds of amino acids, and assigned sec-

ondary structures based on the simple orthogonal product

of six independent probabilities. Samudrala et al. (Hung

and Samudrala 2003) developed the PsiCSI method by

taking both amino acid sequences and chemical shifts into

account and applied a neural network technique.

While CSI and PSSI basically relied on the information of

an individual chemical shift value of a given amino acid and

combined several chemical shift values by the orthogonal

manner, PsiCSI considered the information of amino acids

sequence and chemical shift values for three consecutive

amino acids. Markley et al. (Eghbalnia et al. 2005) (PECAN

method) utilized either a pair or a triplet of chemical shift

values of amino acids after optimizing a combination of

sequence information and residue-specific statistical energy

function. Chung et al. (Wang et al. 2007) (2DCSI), in par-

ticular, used pairs of chemical shift values and showed a

success ratio(so-called Q3 score) of 88.1% (86.7%) for the

correct assignment of secondary structures of amino acids with

six (more than three) chemical shift values from 165 (336)

proteins. For 45 new validating proteins, the Q3 scores of CSI,

PsiCSI, and 2DCSI were 84.3, 87.7, and 87.7%, respectively.

(The error bars of these Q3 scores for the previous approaches

were not presented in their corresponding references.) Instead

of using chemical shift values of a single amino acid, Bax and

co-workers (Cornilescu et al. 1999) considered chemical

shifts of the adjacent triplet amino acids along a sequence in

200 training proteins and developed TALOS? (Shen et al.

2009) in conjunction with the two-layer artificial neural net-

work, which predicts backbone torsion angles and secondary

structures of proteins. The leave-one-out validation test of

TALOS? provided the overall Q3 score of 88.9% which

compared favourably with that of previous approaches. (Spera

and Bax 1991; Wishart et al. 1991, 1992; Wishart and Sykes

1994; Wang and Jardetzky 2002; Hung and Samudrala 2003;

Eghbalnia et al. 2005; Wang et al. 2007). Although progresses

were made in assigning secondary structures of proteins by

previous empirical methods (Spera and Bax 1991; Wishart

et al. 1991, 1992; Wishart and Sykes 1994; Wang and Jar-

detzky 2002; Hung and Samudrala 2003; Eghbalnia et al.

2005; Wang et al. 2007; Shen et al. 2009), the fundamental

physical-mathematical framework, pertaining for assigning

secondary structures of a protein from chemical shift values of
13Ca;13 Cb;13 C0;1 Ha;15 N;1 HN atoms in the protein NMR

experiment, has been neither explored nor the parameter space

of hetero-nuclear NMR chemical shifts was fully explored.

These hindered us from fully understanding the inherent

structural characters embedded in that complex correlation

between chemical shifts of 13Ca;13 Cb;13 C0;1 Ha;15 N;1 HN

atoms and the local structural environment of amino acids.

In this paper, we present a simple multi-dimensional het-

ero-nuclear chemical shift score function (MDHN-CSSF)

which captures systematically and quantitatively the salient

feature of the complex correlation between chemical shifts

and secondary structures of proteins. MDHN-CSSF is robust

in its simplest form of score parameters for the complex cor-

relation without a priori assumption or adjustable objective

parameters, therefore it can be applied to any set of proteins

without the loss of generality. Score parameters in MDHN-

CSSF were constructed by either the statistical approach or the

neural perceptron learning approach (Bowie et al. 1991;

Chang et al. 2001; Heo et al. 2005). The singular value

decomposition (SVD) analysis (Leon 1998) of MDHN-CSSF

uncovers the symmetry-breaking vector not only for distin-

guishing and assigning different secondary structures but also

for capturing its reliability order which provides the straight-

forward physical-mathematical basis for explaining the deli-

cate yet orchestrated sensitivity of chemical shift values of
13Ca;13 Cb;13 C0;1 Ha;15 N;1 HN atoms, either alone or in their

hetero-combinations, toward determination of secondary

structures. Such a physical-mathematical framework uncov-

ered herein encompasses the digital filtering concept of CSI

(Wishart et al. 1991, 1992; Wishart and Sykes 1994) and its

applications (Wang and Jardetzky 2002; Hung and Samudrala

2003; Eghbalnia et al. 2005; Wang et al. 2007).

Database for chemical shifts: secondary structures

of proteins and design of conformational state of amino

acid

Database relating chemical shift values to secondary

structures of proteins

In order to construct, train, and validate MDHN-CSSF, we

first prepare the database for chemical shift-secondary

structure information of proteins from BMRB entries
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(Ulrich et al. 2007) (Biological Magnetic Resonance Bank,

http://www.bmrb.wisc.edu) and PDB entries (Berman et al.

2000) (Protein Data Bank, http://www.pdb.org) in con-

junction with RefDB (Zhang et al. 2003) (http://redpoll.

pharmacy.ualberta.ca/RefDB/). BMRB provides chemical

shift values of atoms in amino acids’ sequence from NMR

experiment. PDB provides three-dimensional structures of

proteins, from which the one-to-one correspondence

among amino acids’ sequence, experimental chemical shift

values and structures of proteins are correctly established.

Since there are differences in the reference values of

chemical shifts due to different experimental conditions,

the structural information of proteins are rigorously cross-

checked, and chemical shift values are re-referenced by

RefDB. The careful selection process results in a database

for chemical shift values-secondary structures of 324 pro-

teins with the sequence identity of less than 30% among

them, in which there are 36,289 amino acids with the

smallest (biggest) protein containing 20 (994) residues. For

an alternate evaluation of MDHN-CSSF, we also used a

database ASTRAL SCOP (Chandonia et al. 2004) (http://

astral.berkeley.edu) for proteins whose structures were

resolved by X-ray crystallography. We selected 6,812

proteins with the sequence identity of less than 25% among

them, in which there are 1,156,412 amino acids with the

smallest (biggest) protein containing 21 (937) residues, and

chemical shift values of 13Ca;13 Cb;13 C0;1 Ha;15 N;1 HN

atoms were calculated by SHIFTX (Neal et al. 2003),

SPARTA (Shen and Bax 2007) and SHIFTX2 (Han et al.

2011). Since the chemical shift values calculated via

SHIFTX and SPARTA are not as accurate as those from

NMR experiments, one might concern that the correlations

of chemical shift values with secondary structures of amino

acids are not high so as to result in the slightly biased

assignment. Recently Wishart and co-workers (Han et al.

2011), however, developed SHFITX2 which significantly

improved protein chemical shift prediction. One may,

however, note that SHIFTX2, an updated version of the

original SHIFTX with a homology module, works better

for proteins with homology in the protein database.

Otherwise, its performance is similar to the original

SHIFTX and other similar programs. The correlation

coefficients between predicted chemical shift values from

SHIFTX2 and observed ones from NMR experiment are

very high, and they are 0.9800 (15N), 0.9959 (13Ca), 0.9992

(13Cb), 0.9676 (13C0), 0.9714 (1HN), 0.9744 (1Ha). Having

SHIFTX2 available in the public domain, which achieved a

high level of accuracy for predicting chemical shift values

from protein coordinate date, we decide to employ

SHIFTX2 for calculating chemical shift values of back-

bone atoms in 6,812 proteins from ASTAL SCOP. We will

call the RefDB as ‘‘RDB’’ and the ASTRAL SCOP as

‘‘ADB’’. Within RDB (ADB), 254 (6,152) out of 324

(6,814) proteins belong to the classes of a, b, a ? b, a/b
protein, and remaining proteins belong to the other mis-

cellaneous classes. The secondary structures of amino acids

in both RDB and ADB were evaluated by DSSP, STRIDE,

and VADAR (Kabsch and Sander 1983; Frishman and

Argos 1995; Willard et al. 2003) from which 30,228

(949,541) amino acids in RDB (ADB) possessed the full

consensus of three secondary structures and thus partici-

pated into the construction of MDHN-CSSF (see Supple-

mentary Table 1 for PDB codes of 324 and 6,812 training

proteins).

Parameterization of local environments

of 13Ca;13 Cb;13 C0;1 Ha;15 N;1 HN atom

Prior to the multi-dimensional construction of the correla-

tion between chemical shift values and secondary structures,

we first set up a minimalistic parameterization for local

environments of 13Ca;13 Cb;13 C0;1 Ha;15 N;1 HN (j = 1,

2, …, 6) atoms by the amino acid type (i = 1, 2, …, 20)

where atoms belong to and its secondary structure

(l = 1, 2, 3) out of a-helix, b-strand and random coil,

respectively. Then, vl
ij denotes a chemical shift value of an

atom of a type j in an amino acid of a type i when its sec-

ondary structure is of a type l. Min(vij
l ) (Max(vij

l )) is the

minimum (maximum) value out of vl
ij � 3rl

ij; (vl
ij þ 3rl

ij) for

each of 20 9 6 cases where vl
ij denotes an averaged chem-

ical shift value for an atom j of an amino acid i in lth sec-

ondary structure, and rl
ij is its standard deviation. Then, we

divide the range between vmin
ij and vij

max into nb bins so that

chemical shift values between Minðvl
ijÞ þ ðkij � 1ÞðMax

ðvl
ijÞ �Minðvl

ijÞÞ=nb and Minðvl
ij þ kijðMaxðvl

ijÞ- Minðvl
ijÞÞ

=nb are parameterized by an index kij = 1, 2, …, nb where

nb can be 8, 10, …, 20 subject to the resolution of binning

for chemical shift values.

Designing the multi-dimensional conformational state

of amino acid

Using RDB, the occurrence statistics N(i, j, kij, l) for

the number of each of 13Ca;13 Cb;13 C0;1 Ha;15 N;1 HN

ðj ¼ 1; 2; . . .; 6Þ atoms with chemical shift type kij in amino

acid i with the secondary structure type l is constructed.

Figure 1, for instance, shows a probability distribution

N(i, j, kij, l) for each of three secondary structures for six

atoms in alanine amino acid. It illustrates that three prob-

ability distribution curves for a-helix, b-strand, and random

coil could be distinguished from each other to some degree,

and that the same qualitative criterion applies for other
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atoms and amino acids (Wang and Jardetzky 2002; Wang

et al. 2007) (see Supplementary Figure 1 for remaining

19 amino acids). This kind of observational and putative

criterion, however, has its drawback with regard to the

systematic and quantitative assignment of secondary

structures due to the limited and orthogonal exploration of

multi-dimensional conformational states of amino acids. In

order to overcome such ambiguities, we develop one

framework which captures the salient quantitative measure

to assign secondary structures of amino acids from their

chemical shift values. We define the multi-dimensional

conformational state of a given amino acid i by indices kij

and l so that the conformational state of a given amino acid

could belong to one state out of 3(nb)d states, where d is the

number of hetero-nucleus whose chemical shift values are

utilized. Since there are 6Cd ways to choose d atoms out

of 13Ca;13 Cb;13 C0;1 Ha;15 N;1 HN atoms, the correlation

matrix for each amino acid becomes a 6Cd by 3(nb)d matrix.

Provided with all or few chemical shift values of
13Ca;13 Cb;13 C0;1 Ha;15 N;1 HN atoms for a given amino

acid from the protein NMR experiments, our main aim is to

uncover the complex yet coherent correlation through the

quantitative and systematic manner between chemical shift

values and secondary structures, which can then result in

the successful assignment of the secondary structure from

the simultaneous orchestration of heterogeneous chemical

shift values in the d-dimensional phase space where d can

be 1, 2, 3, 4, 5, and 6.

Construction of chemical shift score function

and strategy for assigning secondary structure

Statistical approach

For each ensemble of 6Cd ways of simultaneously consid-

ering chemical shift values of d atoms in an amino acid i,

the multi-dimensional conformational state of an amino

acid is parameterized in terms of an environmental index

m = 1 * (nb)d, (nb)d ? 1 * 2(nb)d, 2(nb)d ? 1 * 3(nb)d

for an amino acid to reside in a-helix, b-strand, and random

coil, respectively. The environmental index m parameter-

izes a local structural configuration around an amino acid

in terms of its secondary structure and conformational state

of the combination of chemical shifts for d - hetero atoms.

We adopt a well-known analytic form of a score function,

so-called log-odd ratio, for the statistical analysis of bio-

informatic data, which measures the relative importance

for an occurrence of a particular conformational state of

amino acid with respect to an average occurrence of that

(Bowie et al. 1991; Chang et al. 2001; Heo et al. 2005).

We define a simple score function:

Sstat
i ðq;mÞ ¼ �ln½Piðq;mÞ=PiðqÞ�; ðq ¼ 1; 2; . . .;6 CdÞ

ð1Þ

which represents the relative propensity for an amino

acid i to be at the multi-dimensional conformational

state (q, m) in the systematic and quantitative manner.

Here PiðqÞ ¼ NiðqÞ=Ntotal
i and Pi(q, m) = Ni(q, m)/Ni(q).

Ni(q, m) is the number of an amino acid i found in an

environment m with the qth ensemble of configuring

d atoms. Pi(q) is a probability to find an amino acid i in qth

ensemble of configuring d-hetero atoms. Pi(q, m) is a

probability to find an amino acid i in qth ensemble of

configuring d-hetero atoms at the conformational state m of

the combination of chemical shifts. The conditions

NiðqÞ ¼
P3ðnbÞd

m¼1 Niðq;mÞ and Ntotal
i ¼

P
6Cd

q¼1 NiðqÞ hold.

Ni(q, m) could be readily obtained from 270 (6,812) pro-

teins from RDB (ADB) since it contains the multi-dimen-

sional occurrence statistics for chemical shift values of

atoms in a given amino acid at a particular secondary

structure.

Neural perceptron learning approach

We also construct alternative score parameters by the

neural perceptron learning approach (Krauth and Mezard

1987) which discriminates a wrong assignment of sec-

ondary structure from a correct one. The main idea is that

the propensity score for a given amino acid to be at a

correct secondary structure must be lower than that at the

remaining two-wrong secondary structures. For example, if

alanine residue with a particular set of chemical shift val-

ues is located at a-helix in a given protein, the score

function for alanine must have a lower score at a-helix than

at b-strand or random coil with the same set of chemical

shift values. Knowing a priori chemical shift values and

correct secondary structures for 270 training proteins in

RDB, we build the following inequality for each of 19,887

amino acids:

X6Cd

q¼1

X3ðnbÞd

m¼1

½nwrong
i ðq;mÞ � ncorrect

i ðq;mÞ�Sneur
i ðq;mÞ[ 0 ð2Þ

where ncorrect
i ðq;mÞðnwrong

i ðq;mÞÞ is 1 for the correct (wrong)

assignment of secondary structure taking place at (q, m), and

otherwise 0. The score parameters Sneur
i ðq;mÞ; which satisfy

simultaneously 39,774 inequalities constructed from 19,887

amino acids in RDB, are determined by the neural perceptron

learning method (Krauth and Mezard 1987). The validity and

effectiveness of neural perceptron learning method, applied

to design protein energy function for protein fold

recognition, was demonstrated before (Chang et al. 2001;

Heo et al. 2005). Note however, that there are few cases
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which do not satisfy the inequality intrinsically, when two-

same amino acids with the same chemical shift environment

reside in two-different secondary structures. Therefore, after

subtracting few unsolvable inequalities of such intrinsic cases

from 39,774 inequalities, we are able to make the neural

perceptron learning of score parameters learnable, and produce

optimal score parameters Sneur
i ðq;mÞ for d = 2 and 3. The

general strategy to solve (2) for each amino acid i is to obtain

the unknown Sneur
i ðq;mÞ which satisfies all inequalities

simultaneously in the 6Cd by 3(nb)
d dimensional space of

score parameters. Here, nwrong
i ðq;mÞ � ncorrect

i ðq;mÞ
� �

� n!i

is fixed once a set of 19,887 amino acids from RDB is chosen.

We started from an initial value of Sneur
i ðq;mÞt¼0 and calculated

the value of

n!i � S
!neur

i ¼
X6Cd

q¼1

X3ðnbÞd

m¼1

nwrong
i ðq;mÞ � ncorrect

i ðq;mÞ
� �

� Sneur
i ðq;mÞt¼0 ð3Þ
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Fig. 1 Probability distribution

curves for chemical shift values

of 13Ca;13 Cb;13 C0;1 Ha;
15N;1 HN atoms in a-helix,

b-strand, and random coil for

alanine amino acid. The

occurrence statistics for these

distributions were calculated

based on 19,887 amino acids in

270 training proteins in RDB
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for all inequalities. The vectors n!i; whose score gap n!i �
S
!neur

i is negative, are the ones which do not satisfy the

inequality, and the corresponding assignment of secondary

structure becomes a failed one. We choose the worst vector

n!worst
i ; among the failed assignments, which have the

lowest value of score gap, and update S
!neur

i;tþ1 by S
!neur

i;tþ1 ¼
S
!neur

i;t þ k n!worst
i =j S!

neur

i;t þ k n!worst
i j; ð0\k\1Þ so that

the score gap for the worst assignment can increase. We

calculate the scalar product n!i � S
!neur

i again with the new

S
!neur

i;tþ1; and the set of failed assignments and the worst

assignment are identified in order to update S
!neur

i;tþ1 again.

We repeat this procedure until the failed assignment does

not appear. As we repeat this iteration procedure with the

updated S
!neur

i;tþ1; the score gap n!i � S
!neur

i;tþ1 increases mono-

tonically from negative values to positive values. The fact

that the score gap becomes positive, however, does not

mean that we attain the optimal value for S
!neur

i : The main

purpose of this update is to optimize S
!neur

i;final; which can

stabilize the score of a correct assignment against those of

wrong assignments of secondary structures so that a correct

assignment can be maximally recognized. We observe that

the score gap increases as the iteration procedure goes on,

and we stop the perceptron learning process when the score

gap converges and saturates to the maximum positive value

within a finite number of iteration. If a solution of (2) exists,

the vector S
!neur

i;final converges to an optimal region of points

in the 6Cd by 3(nb)d dimensional space of score parameters,

and the worst score gap ni
!worst � S

!neur

i;final become positive

finite and maximal within a finite number of iterations.

Strategy for assigning the most probable secondary

structure using MDHN-CSSF

Provided with a set of chemical shift values for d atoms in a

given amino acid i, which are parameterized by (q, mq), and

score parameters Si(q, m) by either the statistical approach or

the perceptron learning approach, we assign the secondary

structure of a given amino acid i using the following strategy.

We calculate the propensity for a given amino acid i to reside

in a-helix, b-strand, and random coil, respectively:

Si;a ¼
X

fqg
Siðq;mqÞ; Si;b ¼

X

fqg
Siðq;mq þ ðnbÞdÞ;

Si;coil ¼
X

fqg
Siðq;mq þ 2ðnbÞdÞ:

ð4Þ

We employ the ground state rule to assign the most prob-

able secondary structure of an amino acid i as the one

possessing the lowest score among Si, a, and Si, b, Si, coil.

Our strategy for assigning the secondary structure does not

resort to assumptions and adjustable parameters a priori in

the shape of occurrence statistics N(i, j, kij, l) for the heu-

ristic, observational criteria, and neither a reference with

respect to chemical shift values of amino acids in a random

coil. Therefore, our MDHN-CSSF method is robust for an

assignment of the most probable secondary structure of

amino acid, and we examine how the Q3 score for the

correct assignment of secondary structures improves pro-

gressively with values of d and nb. Since we assign the

secondary structure based on chemical shift values of an

individual amino acid, this might cause a fragmented

assignment of secondary structures. In order to consider the

connectivity of the amino acids’ sequence, we apply the

smoothing procedure to assign the most probable second-

ary structure in accordance with their statistics of the

occurrence of three consecutive secondary structures.

Whenever secondary structures of two adjacent (i.e.

(k - 1, k ? 1)th, (k - 2, k - 1)th, or (k ? 1, k ? 2)th)

amino acids are different from that of the kth amino acid.

We construct the adjacency, forward, and backward

smoothing matrix around a given kth amino acid by the

frequency counting of secondary structures for three con-

secutive amino acids. Therefore, given secondary struc-

tures of (k - 1, k ? 1)th, (k - 2, k - 1)th, or (k ? 1,

k ? 2)th amino acids, we assign the secondary structure of

the kth amino acid as the one which has the highest

occurrence. Each smoothing matrix is a (20 9 3) 9

(20 9 3) 9 (20 9 3) dimensional matrix, and is con-

structed from 20,922 proteins in ASTRAL SCOP database

(v. 1.67).

Results and discussion

Training of MDHN-CSSF score parameters

and re-assignment of secondary structures for training

proteins

From 324 proteins in RDB we employ 270 proteins for

training MDHN-CSSF score parameters whereas the

remaining 54 proteins will be used later for the validation

test of MDHN-CSSF (see Supplementary Table 1 for PDB

codes of 270 training proteins). Score parameters

Sstat
i ðq;mÞðSneur

i ðq;mÞÞ are constructed based on (1) (Eq.

(2)) for several values of d and nb (see ‘‘Statistical

approach’’, ‘‘Neural perceptron learning approach’’). It is

important to test how well Sstat
i ðq;mÞðSneur

i ðq;mÞÞ reflects

the complex and heterogeneous correlations between

chemical shift values and secondary structures by exam-

ining how successfully it reproduces correct secondary

structures of 19,887 amino acids in 270 training proteins.

Given both these score parameters and parameterized
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indices of the multi-dimensional conformational state of

19,887 amino acids in 270 training proteins as the input

information and pretending that correct secondary struc-

tures of amino acids are not known, we re-assign the most

probable secondary structures of amino acids by the strat-

egy described in ‘‘Strategy for assigning the most probable

secondary structure using MDHN-CSSF’’. Figure 2a

illustrates the progressively improving Q3 scores of

Sstat
i ðq;mÞðSneur

i ðq;mÞÞ for the correct assignment of sec-

ondary structures for d = 1, 2, 3, 4, 5 (d = 2, 3) with

nb = 8, 10, …, 20 after considering 16,579 amino acids

having more than three chemical shift values ncs C 4. As

we consider simultaneously chemical shift values of more

hetero-nucleus in a given amino acid, and as the resolution

of the parameterization of chemical shift values increases,

the multi-dimensional exploration for capturing the salient

feature of complex correlations between chemical shift

values and secondary structures becomes more precise.

Therefore, the Q3 score of Sstat
i ðq;mÞðSneur

i ðq;mÞÞ for the

correct assignment of secondary structure improves dra-

matically from 80% for d = 1, nb = 8 to 97% for d = 3,

nb = 20 or d = 4, nb = 14 (from 96% for d = 2, nb = 8 to

98% for d = 3, nb = 14), as shown in Fig. 2a. Table 1a

presents the Q3 scores averaged over 270 training proteins

for d = 1, 2, 3, 4, 5 (d = 2, 3) with nb = 10, 10, 10,

10, 8 (nb = 10, 10). For each protein, both the assignment

and the smoothing of secondary structures are performed as

described in ‘‘Strategy for assigning the most probable

secondary structure using MDHN-CSSF’’. Note the Q3

score of 95.4 ± 4.0% for d = 5, nb = 8 (97.1 ± 2.7% for

d = 3, nb = 10). The results indicate that a simple and

straightforward MDHN-CSSF captures the essential com-

plex correlations between chemical shift values and sec-

ondary structures. We repeat the same calculations for both

constructing Sstat
i ðq;mÞ from 6,812 proteins (see Supple-

mentary Table 1) in ADB and re-assigning secondary

structures of themselves. Table 1b lists the Q3 scores of

91.3 ± 4.1% for d = 5, ncs C 5 when averaged over 6,812

proteins. The Q3 scores averaged over the number of

amino acids are also listed in the parenthesis in Table 1.

Previous approaches such as CSI, PSSI, PsiCSI, PECAN,

2DCSI, and TALOS? (Wishart et al. 1991, 1992; Wishart

and Sykes 1994; Wang and Jardetzky 2002; Hung and

Samudrala 2003; Eghbalnia et al. 2005; Wang et al. 2007;

Shen et al. 2009) employed certain numbers of training

proteins to produce score parameters. From these param-

eters, secondary structures of amino acids in training pro-

teins themselves were re-assigned, and then compared with

their correct secondary structures. This is, in fact, the

recognition rather than the prediction of secondary struc-

ture. The Q3 scores for the correct recognition of secondary

structures by the CSI, PSSI, PsiCSI, PECAN, 2DCSI,

TALOS? methods were 92, 88, 85.9, 83, 86.7 and 88.9%

based on 20, 36, 92, 310, 336 (with ncs C 4), and 200

training proteins, respectively. (The error bars of these Q3

scores for the previous approaches were not presented in

their corresponding references.)

Symmetry-breaking vector and reliability order

from singular value decomposition(SVD) analysis

of MDHN-CSSF

Having constructed score parameters S(q, m) of MDHN-

CSSF for all 20 amino acids based on (1) using 6,812

proteins in ADB. We performed a singular value decom-

position (SVD) analysis of S(q, m). The purpose is to re-

express S(q, m) in terms of a linear combination of new

orthogonal eigenmodes in the lower-dimensional space so

that the biological and chemical characteristics of

S(q, m) can emerge naturally in the few most dominant

eigenmodes (Chang et al. 2001; Heo et al. 2005; Leon

1998). The SVD theorem allows us to express S as

S ¼ YVT ¼ URVT where Y;U;R; and V is 6Cd by 3(nb)d,

6Cd by 6Cd, 6Cd by 3(nb)d, and 3(nb)d by 3(nb)d dimensional

matrix, respectively, and T denotes a transpose matrix.

Matrix elements of R are all zero except diagonal terms rk,

where k = 1, 2, …, 6Cd. For each amino acid i, the SVD

S ¼ YVT ¼ URVT resents it by a new set of orthogonal

eigenvectors (VT)k such that Sðq;mÞ ¼
P

6Cd

k¼1 yq
kðVTÞmk ;

where q = 1, 2, …, 6Cd and m = 1, 2, …, 3(nb)d. The

Vk

0
s are eigenvectors corresponding to rank ordered eigen-

value of STS, and the yq
k are its expansion coefficients.

The results from the SVD analysis of Sstat(q, m) for

histidine amino acid, for example, are presented in Figs. 3

and 4 for d = 1, 2, 3 with nb = 10. Figure 3a shows the

first dominant eigenvector V1
m of the largest eigenvalue r1

for d = 1, and Fig. 3e gives the reliability y1
q of each atom

to this first mode when considering a single chemical shift

value. The element of V1
m represents the overall shape for

the occurrence distribution of chemical shift values as a

function of the local environmental parameter m, where

m = 1–10, 11–20 and 21–30 corresponding to chemical

shift values of atoms in a-helix, b-strand, and random coil,

respectively. It shows that they are mostly centered around

the median chemical shift value vmid(q) irrespective of

secondary structures, and this tendency is strongest

(weakest) for a-helix (random coil). The value of y1
qV1

m

gives the likelihood of finding q atom ðq ¼13 Ca;
13Cb;13 C0;1 Ha;15 N;1 HNÞ at the mth local environment.

Therefore, V1
m is an eigenmode which prefers to assign

random coil as the secondary structure of the amino acid

since y1
q \ 0 for all q and y1

q V1
m=1–10, y1

q V1
m=11–20 [

y1
q V1

m=21–30. However, this over-tendency is corrected in a
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self-consistent manner by accumulating the contributions

from higher eigenmodes for a-helix and b-strand. Thus, the

first mode V1
m not only distinguishes chemical shift values

of atoms around vmid(q) from those away from vmid(q) but

also is an eigenmode for assigning random coil. And y1
q

characterizes its reliability in the order of 13Cb;13 Ca;
15N;13 C0;1 Ha;1 HN : Figure 3b (Fig. 4a) presents the first

dominant eigenvector V1
m(d = 2) (V1

m(d = 3)) for d = 2

(3), and Fig. 3f (Fig. 4c) illustrates its reliability y1
q(d = 2)

(y1
q(d = 3)) in the order of CaCb;CbC0; . . .ðCaCbC0;

CaCbN; . . .Þ among 15 (20) ensembles when configuring

pair (triplets) of chemical shift value of histidine amino

acid simultaneously. Figure 3b resembles to 3a and dem-

onstrates a diffraction-like pattern with the global/local

maximum and local minimum depending upon whether

two, one, or none of chemical shift values of two atoms

coincide with vmid(q). Therefore, the SVD analysis of

MDHN-CSSF score parameters systematically capture the

delicate sensitivity interplayed by chemical shift values of

d atoms simultaneously in that the small change in a

chemical shift value of one atom within a multiplet of

d atoms may cause a large change in score parameter

S(q, m), which in turn necessitates the use of higher-

dimensional hetero-nuclear chemical shifts and facilitates

the assignment of secondary structures of proteins.

Figures 3c, d and 4b are plots of the second dominant

eigenvectors V2
m for d = 1, 2 and 3, respectively, which

clearly distinguish a-helix from b-strand. And Figs. 3g, h

and 4d present the reliability y2
q of a single atom (d = 1),

pair of atoms (d = 2), and triplet of atoms (d = 3) to the

second mode, respectively. For instance, the secondary

structure of a histidine amino acid according to the

chemical shift value of its 13Cb atom favours a-helix for

m B 5 (b-strand for m C 5) since y2
q V2

m \ 0 for d = 1. On

the other hand, the opposite holds for 13Ca atom because

the more negative y2
q V2

m (d = 1) is for one secondary

structure, the higher is the likelihood for the amino acid

to be in that secondary structure. We interpreted

V2
m(d = 1, 2, 3) of Figs. 3c, d and 4b as a symmetry-

breaking eigenvector which distinguishes a-helix from

b-strand, and the corresponding y2
q(d = 1, 2, 3) of Figs. 3,

h and 4d entails the reliability order in the order of the

magnitude of y2
q(d = 1, 2, 3). Note that for random coil V2

m

^ 0 and it barely has a preference. The message from this

algebraic analysis of the second mode is that it provides a

fundamental physical-mathematical framework of the

digital filtration concept behind the original CSI (Wishart

et al. 1991, 1992; Wishart and Sykes 1994) to assign a

ternary index of -1, 0, or 1 depending on the measured

chemical shift value of an atom with respect to that in a

random coil as the reference value. What is important in

the consequence of the SVD analysis of MDHN-CSSF

herein is that it not only encompasses the digital filtration

concept behind CSI but also generalizes toward its con-

tinuous filtration concept manifested in y2
qV2

m uncovering

the symmetry-breaking vector and its reliability order for

general d. Furthermore, it provides a physical-mathemati-

cal understanding for the interpretation of the second

dominant eigenvector. Note also that the eigenvector

components V2
m(d = 1, 2, 3) for a-helix, b-strand are

Table 1 Q3 scores for correctly

assigning secondary structures

of amino acids based on their

chemical shift values and the

smoothing process. (a) Q3

scores averaged over 270

training proteins, 54 validating

proteins with ncs C 4 by

MDHN-CSSF score parameters

Sstat
i ðq;mÞ and Sneur

i ðq;mÞ; and

other existing methods such as

CSI, PsiCSI, PSSI, PECAN,

(b) The same for 6,812 training

proteins and 1,026 validating

proteins in ADB with ncs C 5.

The same table with different

values of nb = 20, 20, 20, 14, 8

(20, 14) for d = 1, 2, 3, 4, 5

(d = 2, 3) is presented as

supplementary Table 2 in the

supplementary information

(a)

(b)
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anti-correlated from Figs. 3c, d and 4b; namely the sym-

metry-breaking character distinguishing a-helix from b-

strand manifested in the second mode is of the universal

character, which generally prevails in d-dimensional phase

space of chemical shift values for d atoms. Here,

y2
qV2

m(d = 2) (y2
qV2

m(d = 3)) again provides the second

dominant propensity of finding the qth ensemble of com-

bining chemical shift values of d atoms at its mth local

environment. Figure 3h (Fig. 4d) presents the reliability

order for assigning a-helix and b-strand, for which the

second mode is reliable in the order of CaHN ;C0HN ;

CaHa;C0Ha;CaN; . . . ðC0HaHN ;C0HaN;CaCbHN ;CaHa

HN ; . . .Þ based on the magnitude of y2
q(d = 2) (y2

q(d = 3)).

We know that 1HN and N atoms play little role in assigning

secondary structure when considering only one atom at a

time as shown in Fig. 3c, g that 1HN and 15N atoms bear the

weakest propensity in y2
qV2

m(d = 1). Nevertheless, we rec-

ognize that 1HN and N atoms can play a significant role in

the multi-dimensional phase space of hetero-nuclear by

forming pairs such as C0HN and CaN (triplets like CaCbHN

and C0HaN); namely, these pairs (triplets) have the highest

reliability order to exercise the dominant role in assigning

secondary structures with the strongest propensity in

y2
qV2

m(d = 2). On the other hand, note from Fig. 3h

(Fig. 4d) that pairs NCb, NHa (triplet CaC0Ha) possess a

negligible contribution to y2
qV2

m(d = 2) (y2
qV2

m(d = 3). The

delicate-yet-rigorous role played by 13Ca;13 Cb;13 C0;
1Ha;15 N;1 HN atoms, either alone or in their combination

of d atoms, in assigning secondary structures, is precisely

captured by the SVD analysis of MDHN-CSSF. The SVD

analysis results for the remaining 19 amino acids bear the

similar eigenmode interpretation (see Supplementary Fig-

ure 2 for d = 1, 2 and Figure 3 for d = 3). The same SVD

analysis are performed on score parameters S(q, m) from

270 proteins in RDB. We observe the similar characters of

the symmetry-breaking vectors and reliability orders, but

the overall behaviors of them are less clear that those from

6,812 proteins in ADB because the statistics of data for

chemical shift values-secondary structures from RDB is

worse than that from ADB.

Validation test of MDHN-CSSF for assigning

secondary structures of new validating proteins

54 new proteins that do not overlap with the 270 training

proteins of this work are subjected to the validation test of

Sstat
i ðq;mÞðSneur

i ðq;mÞÞ: We plot the Q3 scores for the

correct assignment of secondary structures of 3,800 amino

acids with ncs C 4 in 54 new proteins in Fig. 2b for d = 1,

2, 3, 4, 5 (d = 2, 3) with nb = 8, 10, …, 20. It demon-

strates the improving Q3 scores, from 79% for

d = 1,nb = 8 to 84% for d = 3, nb = 20 or d = 4, nb = 8

(from 78% for d = 2, nb = 8 to 83% for d = 3, nb = 12)

as d and nb increases. After performing both the assignment

by Sstat
i ðq;mÞðSneur

i ðq;mÞÞ and the smoothing of secondary

structures for each of 54 proteins, Table 1a lists the aver-

aged Q3 scores for d = 1, 2, 3, 4, 5 with nb = 10, 10, 10,

10, 8 for ncs C 4. The best result is 84.1 ± 7.3% for d = 3,

nb = 10 (81.6 ± 7.5% for d = 3, nb = 10). Note also

Supplementary Table 2 in the supplementary information

in which the averaged Q3 scores for d = 1, 2, 3, 4, 5

(d = 2, 3) with nb = 20, 20, 20, 14, 8 (nb = 20, 14) are

listed. CSI, PsiCSI, PSSI, and PECAN provide the web-

service or an executable program to predict secondary

structures upon the input information, namely sequence

and chemical shift value information. For 54 new validat-

ing proteins we employ in our manuscript the Q3 score for

CSI, PsiCSI, PSSI, and PECAN predicting secondary

structures correctly is 82.9 ± 9.5%, 84.2 ± 13.0%, 80.8

± 8.9%, and 83.6 ± 10.3%, respectively, where the error

bar is one standard deviation. These results are listed in

Table 1a, and it turns out that the prediction performance

of MDHN-CSSF for d [ 1 is comparable to those of these

existing methods within the error bar for the same set of

validating proteins. For the validation test of Sstat
i ðq;mÞ

constructed from 6,812 training proteins with a sequence

identity of less than 25% in the ADB, we selected again
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Fig. 2 Q3 scores for correctly assigning secondary structures of

amino acids based on their chemical shift values and the smoothing

process. a Q3 scores for 19,887 amino acids with ncs C 4 in 270

training proteins by MDHN-CSSF score parameters Sstat
i ðq;mÞ and

Sneur
i ðq;mÞ; b Q3 scores for 3,800 amino acids with ncs C 4 in 54

validating proteins by MDHN-CSSF score parameters Sstat
i ðq;mÞ and

Sneur
i ðq;mÞ: Q3 scores are drawn by S1D–S5D for d = 1–5 using

Sstat
i ðq;mÞ; and by L2D, L3D for d = 2, 3 using Sneur

i ðq;mÞ
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Fig. 3 Results of the SVD

analysis of Sstat
i ðq;mÞ

constructed from 6,812 training

proteins in ADB for histidine

amino acid. a (c) The first

(second) eigenmode from

considering chemical shift value

of a single atom, b (d) the first

(second) eigenmode from

considering chemical shift

values of pair atoms. The first

eigenmode favours a random

coil, whereas the second

eigenmode possesses the

symmetry for a-helix, b-strand.

e (g) The reliability order of the

first (second) eigenmode for

considering a single chemical

shift value of
13Ca;13 Cb;13 C0;1 Ha;15 N;1 HN

atoms. f (h) The reliability order

of the first (second) eigenmode

for considering chemical shift

values of pair atoms
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1,026 new proteins with ncs C 5 from ADB whose

sequence identity is between 25 and 30% among them. We

predict secondary structures of 154,076 validating amino

acids in 1,026 new proteins using Sstat
i ðq;mÞ as previously

described. The Q3 scores for the correct assignment of

secondary structure improved from 85.7% for d = 1,

nb = 10 to 90.6% for d = 4, nb = 10. Table 1b lists the

averaged Q3 scores over 1,026 proteins, and the best

results is 90.6 ± 4.1% for d = 4, nb = 10. The validation

test of MDHN-CSSF on sets of new proteins shows the

comparable Q3 scores for the correct assignment of sec-

ondary structures in comparison with those of the previous

correlation scores (Wishart et al. 1991, 1992; Wishart and

Sykes 1994; Hung and Samudrala 2003; Eghbalnia et al.

2005; Wang et al. 2007; Shen et al. 2009) and demon-

strates that MDHN-CSSF can capture most of the essential

heterogeneous correlation between chemical shift values

and secondary structures of amino acids. (see Supplemen-

tary Table 1 for the PDB codes of 54, 1026 validating

proteins)

7,838(324) proteins in ADB(RDB) are a set of nonre-

dundant proteins which serves as the structural represen-

tatives of the known protein structures by X-ray (NMR). It

is worthwhile to note that in Table 1 the Q3 scores of

correctly assigning secondary structures for 1,026(54)

validating proteins of ADB(RDB) is compatible with (a

little less than) those for 6,812(270) training proteins of

ADB(RDB). This implies that the structural characters

represented via 6,812 training proteins of ADB are good in

such a way to maintain its Q3 scores for 1,026 validating

proteins at the level of those for 6,812 training proteins.

Although it looks like that score parameters S(q, m) from

ADB correlate the predicted chemical shifts with the sec-

ondary structures of validating proteins better for ADB

compared to what score parameters from RDB do for

validating proteins of RDB, it does not mean that score

parameters are biased to have better correlations for

assigning secondary structures of validating proteins in

ADB because the same holds for training proteins of RDB

with d [ 2 when using score parameters constructed from

RDB. Therefore, the lesson from these results is that the

more representative training proteins ADB or RDB has, the

better score parameters describe the structural characters of

validating proteins, and also reduce the possibility of

overtraining. This is why we decide to construct and use

ADB for recognizing and predicting secondary structure of

proteins from chemical shift values. It is also instructive to

see how well the score parameters constructed from ADB

performs in predicting secondary structures of 54 validat-

ing proteins of RDB. Table 1b lists such Q3 scores which

are better overall by a few percent than those in Table 1a

predicted by score parameters constructed from RDB. It
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Fig. 4 Results of the SVD analysis of Sstat
i ðq;mÞ constructed from

6,812 training proteins in ADB for histidine amino acid. a (b) The

first (second) eigenmode from considering chemical shift value of

three hetero-atoms (d = 3). c (d) The reliability order of the first

(second) eigenmode for considering chemical shift values of triplet

atoms
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illustrates that score parameters from ADB are not biased

since they also correlate chemical shift values with sec-

ondary structures of 54 validating proteins of RDB better

than what score parameters from RDB themselves do.

An issue of sparse distribution and over-training

of correlation score parameters

The over-training problem of score parameters may arise

when (1) the number of nonredundant proteins in the

protein database is not large enough to manifest the rep-

resentative structural characters of all protein families or

(2) the number of score parameters exceeds much more

than the number of amino acids, hence backbone atoms in

the protein database. Either of both cases may result in the

over-training of score parameters.

The number of data points in the multi-dimensional

parameter space of our correlation score parameters is very

large, which is 6Cd 9 3 9 nb
d. For example, for d = 3,

nb = 10 which is a case for the best parameter set there are

6C3 9 3 9 (10)3 = 450,000 data points in the multi-

dimensional parameter space. However, the number of

amino acids is 19,887 in 270 training proteins of RDB. The

distribution of a set of chemical shift values of amino acid

on the multi-dimensional parameter space is sparse, and

therefore the statistics of the occurrence of the chemical

shift value-secondary structure is not that good [see (1)]. In

order to circumvent this situation we need much more

training proteins, but currently the number of available

proteins from NMR experiment for this purpose is limited.

Since we recently know that the calculated chemical shift

values via SHIFTX2 using X-ray structures is accurate and

compatible to that from NMR-structures of proteins, we

decided to build up the better statistics for the occurrence

of chemical shift value-secondary structure on the multi-

dimensional parameter space. There are 6,812 training

proteins in ADB, and the number of amino acids n there is

1,156,412 which is about 580 times larger than 19,887.

Since one of our aim is to test how good our approach is

and hence correlation score parameters are for representing

the heterogeneous correlation between chemical shift val-

ues and secondary structures, the data set with more pro-

teins like ADB help us to pursue this purpose.

The strategy here is to evaluate (or learn) the correlation

score parameters which correlate chemical shift values

with secondary structures of amino acids based on the

known propensity between these in training proteins. One

tests how good the correlation score parameters are by re-

predicting secondary structures of training proteins by

themselves. Therefore, the prediction capability for train-

ing proteins themselves is indeed good if the parameteri-

zation for the score function was done properly. And then

one applies these correlation score parameters to predict

secondary structures of new validating proteins which do

not participate in evaluating the correlation score parame-

ters. Therefore the prediction capability for validating

proteins is naturally not as good as that for training proteins

because the correlation score parameters are more prone to

describe easily the structural character of training proteins

than validating proteins. It is worthwhile to note that sec-

ondary structure identification has an intrinsic error rate

and that the agreement between any two secondary struc-

ture identification methods/programs is usually no better

than 90%. Even two experts looking at the same protein

will identify different secondary structures or different

start/end points of secondary structure elements. The fact

that Q3 scores using score parameters constructed from

RDB for correctly re-assigning secondary structures of

training proteins are mostly more than 90% where as those

for validating proteins are less than 90% might mean that

there is an over-training problem in our approaches In fact,

one can’t avoid certain degree of over-training problem in

designing the correlation score parameters in this kind of

knowledge-based bioinformatics approach because the

number of proteins employed in the training set of RDB is

not large enough to manifest the representative structural

characters of all protein families. But what is important is

how inherent the correlation score parameters evaluated

from training proteins are for predicting secondary struc-

tures of new validating proteins. In view of this aspect,

although there might be an over-training problem, our

correlation score parameters captures good enough struc-

tural characters in predicting secondary structures of new

validating proteins with the comparable Q3 score to that of

existing methods.

Availability of MDHN-CSSF

Score parameters of MDHN-CSSF Sstat
i ðq;mÞðSneur

i ðq;mÞÞ
as a function of q, m for d = 1, 2, 3, 4, 5 (d = 2, 3) for

all 20 kinds of amino acids (i = 1, 2, …, 20) are available

at http://protein.phys.pusan.ac.kr/MDHN-CSSF/index.htm.

Among several parameter sets derived in our approaches,

the best parameter set is the one from d = 4 with nb = 10

from ADB. And we provide the full information such as

PDB code, BMRB index, sequence, secondary structures,

chemical shift values for not only RDB and ADB datasets

but also correlation score parameters at our web page.

More importantly we also provide a downloadable com-

puter program as well as a web-server where one can use it

for predicting secondary structures upon providing

sequence/chemical shift value information. For facilitating

of the easy use of all programs and data files, README

file in there will guide one how to use all these programs

and data files. Provided with amino acids’ sequence of a
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protein and chemical shift values, re-referenced by RefDB,

of atoms there, the secondary structure assignment of a

given protein could be evaluated.

Summary

We present a simple multi-dimensional hetero-nuclear

chemical shift score function (MDHN-CSSF) which cap-

tures the salient features of the complex correlation

between chemical shifts and secondary structures of pro-

teins. MDHN-CSSF is robust in its simplest form of score

parameters for the complex correlation without assump-

tions or adjustable objective parameters a priori so that it

can be applied to any set of proteins without the loss of

generality. Score parameters in MDHN-CSSF are con-

structed by either the statistical approach or the neural

perceptron learning approach. The aim is not to show

merely whether our approach is better or worse than other

approaches (Wishart et al. 1991, 1992; Wishart and Sykes

1994; Hung and Samudrala 2003; Eghbalnia et al. 2005;

Wang et al. 2007; Shen et al. 2009) by a few percentages

in the Q3 score for the correct assignment of secondary

structures, but to understand and provide the physical-

mathematical basis underlying such complex correlations

between chemical shift values and secondary structures of

proteins. The singular value decomposition analysis of

MDHN-CSSF uncovers not only the symmetry-breaking

vector for distinguishing different secondary structures but

also its reliability order which provide the straightforward

physical-mathematical understanding for the delicate yet

orchestrated sensitivity of chemical shift values of
13Ca;13 Cb;13 C0;1 Ha;15 N;1 HN atoms, either alone or in

their hetero-combinations, toward determination of sec-

ondary structures. Such a physical-mathematical frame-

work uncovered herein encompasses the digital filtration

concept of CSI and its applications, and generalizes

towards its continuous filtration concept providing the

symmetry-breaking vector and its reliability order for the

general d. MDHN-CSSF correctly assign secondary struc-

tures of training (validating) proteins with the favourable

(comparable) Q3 scores in comparison with those from the

previous correlation scores. The coherent and quantitative

construction of MDHN-CSSF together with its SVD

eigenmode analysis, and the assignment of secondary

structures without any references to a random coil state

provide a robust strategy for the assignment of secondary

structures of a protein from its atomic chemical shifts. We

hope that the result of this work would facilitate the de

novo determination of three-dimensional structures of

proteins (Cavalli et al. 2007; Shen et al. 2008).
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